4.7 Article

MAX2 Affects Multiple Hormones to Promote Photomorphogenesis

期刊

MOLECULAR PLANT
卷 5, 期 3, 页码 750-762

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mp/sss029

关键词

Arabidopsis; F-box protein; photomorphogenesis; protein degradation; strigolactone; SCF complex

资金

  1. National Science Foundation [IOS-0849287, IOS-1120946]
  2. Division Of Integrative Organismal Systems
  3. Direct For Biological Sciences [0849287, 1120946] Funding Source: National Science Foundation

向作者/读者索取更多资源

Ubiquitin-26S proteasome system (UPS) has been shown to play central roles in light and hormone-regulated plant growth and development. Previously, we have shown that MAX2, an F-box protein, positively regulates facets of photomorphogenic development in response to light. However, how MAX2 controls these responses is still unknown. Here, we show that MAX2 oppositely regulates GA and ABA biosynthesis to optimize seed germination in response to light. Dose response curves showed that max2 seeds are hyposensitive to GA and hypersensitive to ABA in seed germination responses. RT-PCR assays demonstrated that the expression of GA biosynthetic genes is down-regulated, while the expression of GA catabolic genes is up-regulated in the max2 seeds compared to wild-type. Interestingly, expression of both ABA biosynthetic and catabolic genes is up-regulated in the max2 seeds compared to wild-type. Treatment with an auxin transport inhibitor, NPA, showed that increased auxin transport in max2 seedlings contributes to the long hypocotyl phenotype under light. Moreover, light-signaling phenotypes are restricted to max2, as the biosynthetic mutants in the strigolactone pathway, max1, max3, and max4, did not display any defects in seed germination and seedling de-etiolation compared to wild-type. Taken together, these data suggest that MAX2 modulates multiple hormone pathways to affect photomorphogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据