4.7 Article

The Roles of Different CLE Domains in Arabidopsis CLE Polypeptide Activity and Functional Specificity

期刊

MOLECULAR PLANT
卷 3, 期 4, 页码 760-772

出版社

CELL PRESS
DOI: 10.1093/mp/ssq021

关键词

Arabidopsis; cell signaling; CLE; meristem; polypeptide; protein domain

资金

  1. National Science Foundation [MCB-0313546]

向作者/读者索取更多资源

The CLE (CLVATA3/ESR-related) family of plant polypeptide signaling molecules shares a conserved 14-amino-acid (aa) motif, designated the CLE motif, which recent studies suggest is sufficient for CLE function in vitro. In this study, we report that Arabidopsis CLE proteins can function in a tissue-specific manner and confirm some CLE factors can act through different receptors. Using domain swapping, we show for the first time that the CLE motif likely determines much of the functional tissue-specificity of the proteins in planta. However, we also provide evidence in support of the new view that sequences outside the CLE motif (14 aa) contribute to CLE function and functional specificity in vivo. Additionally, we report that deletion of the putative signal peptide from different CLE proteins completely inactivates CLE function in vivo, whereas exchanging the CLE signal peptides with a conventional signal peptide from a rice glycine-rich cell wall protein also influences CLE function. We thus propose that the CLE motif itself determines its functional tissue-specificity by dictating the direct recognition and interaction of each CLE peptide with its optimal receptor(s), whereas the receptor(s) may be available in a tissue-specific manner. On the other hand, the sequences outside the CLE motif may influence CLE function by affecting the processing of CLE peptides, resulting in a change in the availability and/or abundance of CLE peptides in specific tissues and/or cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据