4.7 Article

Molecular Evolution of VEF-Domain-Containing PcG Genes in Plants

期刊

MOLECULAR PLANT
卷 2, 期 4, 页码 738-754

出版社

CELL PRESS
DOI: 10.1093/mp/ssp032

关键词

VEF; EMF2; FIS2; VRN2; VEF-L36; Arabidopsis; PcG; phylogeny; evolution

向作者/读者索取更多资源

Arabidopsis VERNALIZATION2 (VRN2), EMBRYONIC FLOWER2 (EMF2), and FERTILIZATION-INDEPENDENT SEED2 (FIS2) are involved in vernalization-mediated flowering, vegetative development, and seed development, respectively. Together with Arabidopsis VEF-L36, they share a VEF domain that is conserved in plants and animals. To investigate the evolution of VEF-domain-containing genes (VEF genes), we analyzed sequences related to VEF genes across land plants. To date, 24 full-length sequences from 11 angiosperm families and 54 partial sequences from another nine families were identified. The majority of the full-length sequences identified share greatest sequence similarity with and possess the same major domain structure as Arabidopsis EMF2. EMF2-like sequences are not only widespread among angiosperms, but are also found in genomic sequences of gymnosperms, lycophyte, and moss. No FIS2- or VEF-L36-like sequences were recovered from plants other than Arabidopsis, including from rice and poplar for which whole genomes have been sequenced. Phylogenetic analysis of the full-length sequences showed a high degree of amino acid sequence conservation in EMF2 homologs of closely related taxa. VRN2 homologs are recovered as a clade nested within the larger EMF2 clade. FIS2 and VEF-L36 are recovered in the VRN2 clade. VRN2 clade may have evolved from an EMF2 duplication event that occurred in the rosids prior to the divergence of the eurosid I and eurosid II lineages. We propose that dynamic changes in genome evolution contribute to the generation of the family of VEF-domain-containing genes. Phylogenetic analysis of the VEF domain alone showed that VEF sequences continue to evolve following EMF2/VRN2 divergence in accordance with species relationship. Existence of EMF2-like sequences in animals and across land plants suggests that a prototype form of EMF2 was present prior to the divergence of the plant and animal lineages. A proposed sequence of events, based on domain organization and occurrence of intermediate sequences throughout angiosperms, could explain VRN2 evolution from an EMF2-like ancestral sequence, possibly following duplication of the ancestral EMF2. Available data further suggest that VEF-L36 and FIS2 were derived from a VRN2-like ancestral sequence. Thus, the presence of VEF-L36 and FIS2 in a genome may ultimately be dependent upon the presence of a VRN2-like sequence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据