4.4 Review

DNA nanotechnology: understanding and optimisation through simulation

期刊

MOLECULAR PHYSICS
卷 113, 期 1, 页码 1-15

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/00268976.2014.975293

关键词

coarse-grained modelling; DNA nanotechnology; simulation; molecular machines; self-assembly; non-equilibrium systems

资金

  1. University College, Oxford

向作者/读者索取更多资源

DNA nanotechnology promises to provide controllable self-assembly on the nanoscale, allowing for the design of static structures, dynamic machines and computational architectures. In this article, I review the state-of-the art of DNA nanotechnology, highlighting the need for a more detailed understanding of the key processes, both in terms of theoretical modelling and experimental characterisation. I then consider coarse-grained models of DNA, mesoscale descriptions that have the potential to provide great insight into the operation of DNA nanotechnology if they are well designed. In particular, I discuss a number of nanotechnological systems that have been studied with oxDNA, a recently developed coarse-grained model, highlighting the subtle interplay of kinetic, thermodynamic and mechanical factors that can determine behaviour. Finally, new results highlighting the importance of mechanical tension in the operation of a two-footed walker are presented, demonstrating that recovery from an unintended 'overstepped' configuration can be accelerated by three to four orders of magnitude by application of a moderate tension to the walker's track. More generally, the walker illustrates the possibility of biasing strand-displacement processes to affect the overall rate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据