4.5 Article

Signal Transducer and Activator of Transcription 3 Is Required for Abnormal Proliferation and Survival of TSC2-Deficient Cells: Relevance to Pulmonary Lymphangioleiomyomatosis

期刊

MOLECULAR PHARMACOLOGY
卷 76, 期 4, 页码 766-777

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/mol.109.057042

关键词

-

资金

  1. National Institutes of Health National Heart, Lung, and Blood Institute [2R01-HL071106, 1R01-HL090829, HL55301, HL64063, R00-HL089409-03]
  2. Abramson Cancer Center Pilot Project
  3. American Thoracic Society/LAM Foundation [LAM07-001]
  4. American Lung Association [RG-49342-N]

向作者/读者索取更多资源

Tumor suppressor complex TSC1/TSC2 represents a key negative regulator of mammalian target of rapamycin (mTOR)-S6 kinase 1 signaling. Mutational inactivation of TSC1 or TSC2, linked to a rare lung disease, lymphangioleiomyomatosis (LAM), manifests as neoplastic growth of smooth-muscle (SM)-like cells and cystic destruction of the lungs that induces loss of pulmonary function. However, the precise mechanisms of abnormal cell growth in LAM remain uncertain. Here, we demonstrate increased signal transducer and activator of transcription (STAT) 3 expression, phosphorylation, and nuclear localization in SM-like cells in LAM lungs and in TSC2-null xenographic tumors. Treatment of TSC2-null tumors with mTOR inhibitor rapamycin attenuated STAT3 expression and phosphorylation. Increased STAT3 level and activation were also observed in LAM-dissociated (LAMD) cell cultures compared with normal human bronchus fibroblasts (HBFs) from LAM patients. Although interferon (IFN)-gamma inhibited proliferation of HBFs, IFN-gamma treatment had little effect on proliferation of LAMD and TSC2-null cells. Re-expression of TSC2 or treatment with rapamycin inhibited IFN-gamma-induced STAT3 phosphorylation and synergized with IFN-gamma in inhibiting TSC2-null and LAMD cell proliferation. Reduction of STAT3 protein levels or activity using specific small interfering RNA or inhibitory peptide, respectively, decreased proliferation and induced apoptosis in TSC2-null and LAMD cells and sensitized cells to growth-inhibitory and proapoptotic effects of IFN-gamma. Collectively, our data demonstrate that STAT3 activation is required for proliferation and survival of cells with TSC2 dysfunction, that STAT3 impedes growth-inhibitory and proapoptotic effects of IFN-gamma, and that TSC2- and rapamycin-dependent inhibition of STAT3 restores antiproliferative effects of IFN-gamma. Thus, STAT3 may provide a novel therapeutic target for diseases associated with TSC1/TSC2 dysfunction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据