4.5 Article

Bifunctional DNA Alkylator 1,3-Bis(2-chloroethyl)-1-nitrosourea Activates the ATR-Chk1 Pathway Independently of the Mismatch Repair Pathway

期刊

MOLECULAR PHARMACOLOGY
卷 75, 期 6, 页码 1356-1363

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/mol.108.053124

关键词

-

资金

  1. National Institute of Health National Institute of Neurological Disorders and Stroke [5-P50-NS20023, NS030245]
  2. Pediatric Brain Tumor Foundation

向作者/读者索取更多资源

The presence of DNA damage initiates signaling through the ataxia-telangiectasia mutated kinase (ATM) and the ATM- and the Rad3-related kinase (ATR), which phosphorylate, thus activating, the checkpoint kinases (Chk) 1 and 2, which leads to cell cycle arrest. The bifunctional DNA alkylator 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) is cytotoxic primarily by inducing DNA monoadducts and ultimately, interstrand cross-links, which block DNA replication. In this study, we investigated the activation of the ATR-Chk1 pathway in response to BCNU treatment and the dependence of this response on the DNA mismatch repair (MMR) capacity. Medulloblastoma cells were exposed to low and moderate doses of BCNU, and the effects on this DNA damage signaling pathway were examined. In response to BCNU, Chk1 was found to be phosphorylated at serine 345 and exhibited increased kinase activity. Caffeine and wortmannin, which are broad-spectrum inhibitors of ATM and ATR, reduced this phosphorylation. Cell cycle analysis further revealed an accumulation of cells in the S phase in response to BCNU, an effect that was attenuated by caffeine. Small interfering RNA knockdown of ATR also reduced Chk1 phosphorylation after exposure to BCNU. However, knockdown of ATM had no effect on the observed Chk1 phosphorylation, suggesting that ATR was primarily responsible for Chk1 activation. Analysis of Chk1 activation in cells deficient in MMR proteins MutL alpha or MutS alpha indicated that the DNA damage response induced by BCNU was independent of the MMR apparatus. This MMR-independent activation seems to be the result of DNA interstrand cross-link formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据