4.5 Article

Activation of corticotropin-releasing factor receptor 1 selectively inhibits Ca(V)3.2 T-type calcium channels

期刊

MOLECULAR PHARMACOLOGY
卷 73, 期 6, 页码 1596-1609

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/mol.107.043612

关键词

-

向作者/读者索取更多资源

The corticotropin-releasing factor (CRF) peptides CRF and urocortins 1 to 3 are crucial regulators of mammalian stress and inflammatory responses, and they are also implicated in disorders such as anxiety, depression, and drug addiction. There is considerable interest in the physiological mechanisms by which CRF receptors mediate their widespread effects, and here we report that the native CRF receptor 1 (CRFR1) endogenous to the human embryonic kidney 293 cells can functionally couple to mammalian Ca(V)3.2 T-type calcium channels. Activation of CRFR1 by either CRF or urocortin (UCN) 1 reversibly inhibits Ca(V)3.2 currents (IC50 of similar to 30 nM), but it does not affect Ca(V)3.1 or Ca(V)3.3 channels. Blockade of CRFR1 by the antagonist astressin abolished the inhibition of Ca(V)3.2 channels. The CRFR1-dependent inhibition of Ca(V)3.2 channels was independent of the activities of phospholipase C, tyrosine kinases, Ca2(+)/calmodulin-dependent protein kinase II, protein kinase C, and other kinase pathways, but it was dependent upon a cholera toxin-sensitive G protein-mediated mechanism relying upon G protein beta gamma subunits (G beta gamma). The inhibition of Ca(V)3.2 channels via the activation of CRFR1 was due to a hyperpolarized shift in their steady-state inactivation, and it was reversible upon washout of the agonists. Given that UCN affect multiple aspects of cardiac and neuronal physiology and that Ca(V)3.2 channels are widespread throughout the cardiovascular and nervous systems, the results point to a novel and functionally relevant CRFR1-Ca(V)3.2 T-type calcium channel signaling pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据