4.7 Article

Histone H3 Tail Peptides and Poly(ethylenimine) Have Synergistic Effects for Gene Delivery

期刊

MOLECULAR PHARMACEUTICS
卷 9, 期 5, 页码 1031-1040

出版社

AMER CHEMICAL SOC
DOI: 10.1021/mp200372s

关键词

nonviral gene delivery; hybrid polyplexes; histone peptides; transfection

资金

  1. National Science Foundation [DMR-0746458]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Materials Research [0746458] Funding Source: National Science Foundation

向作者/读者索取更多资源

This goal of this work was to explore histone H3 tail peptides containing transcriptionally activating modifications for their potential as gene delivery materials. We have found that these H3 tail peptides, in combination with the cationic polymer poly(ethylenimine) (PEI), can effectively bind and protect plasmid DNA. The H3/PEI hybrid polyplexes were found to transfect a substantially larger number of CHO-K1 cells in vitro compared to both polyplexes that were formed with only the H3 peptides and those that were formed with only PEI at the same total charge ratio; however, transfection was similarly high for polyplexes both with and without transcriptionally activating modifications. Transfections with the endolysosomal inhibitors chloroquine and bafilomycin A1 indicated that the H3/PEI hybrid polyplexes exhibited slower uptake and a reduced dependence on endocytic pathways that trafficked to the lysosome, indicating a potentially enhanced reliance on caveolar uptake for efficient gene transfer. In addition, whereas PEI polyplexes typically exhibit a cytotoxic effect, the H3/PEI hybrid polyplexes did not compromise cell viability. In total, the current studies provide new evidence for the potential role for histone-based materials as effective gene transfer agents, and support for the importance of subcellular trafficking for nonviral gene delivery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据