4.7 Article

Using the Epigenetic Code To Promote the Unpackaging and Transcriptional Activation of DNA Polyplexes for Gene Delivery

期刊

MOLECULAR PHARMACEUTICS
卷 9, 期 5, 页码 1041-1051

出版社

AMER CHEMICAL SOC
DOI: 10.1021/mp200373p

关键词

nonviral gene delivery; HBO1; epigenetics; histone 3 protein

资金

  1. National Science Foundation [DMR-0746458]
  2. Division Of Materials Research
  3. Direct For Mathematical & Physical Scien [0746458] Funding Source: National Science Foundation

向作者/读者索取更多资源

Nonviral gene delivery has seen limited clinical application due in part to the inefficiency with which most nonviral vehicles navigate the intracellular gene delivery pathway. One key problem is the inability of most DNA-packaging materials to release DNA and enable its efficient transcription. Thus, our aim was to develop gene delivery polyplexes capable of initiating their own transcription upon arrival in the nucleus. We created nuclease-resistant polyplexes with plasmid DNA (pDNA) and post-translationally modified histone 3 (H3K4Me3) tail peptides known to signal transcriptional activation on chromosomal DNA When the H3K4Me3-pDNA polyplexes were directly microinjected into the nuclei of NIH/3T3 mouse fibroblasts, protein expression occurred earlier and in a greater fraction of cells than when polyethylenimine-pDNA polyplexes were microinjected. The rate of protein expression initiated by the H3K4Me3-pDNA polyplexes was also significantly accelerated in comparison with the rate initiated by non-trirnethylated H3-pDNA polyplexes. These differences in protein expression rates were quantified by the development of a noncompartmentalized cellular kinetics model. These results highlight the importance of polyplex unpackaging as a gene delivery barrier, and demonstrate for the first time that the epigenetic code can be utilized in nonviral gene delivery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据