4.7 Article

ADME Evaluation in Drug Discovery. 9. Prediction of Oral Bioavailability in Humans Based on Molecular Properties and Structural Fingerprints

期刊

MOLECULAR PHARMACEUTICS
卷 8, 期 3, 页码 841-851

出版社

AMER CHEMICAL SOC
DOI: 10.1021/mp100444g

关键词

oral bioavailability; ADME/T; fingerprint; genetic algorithm; genetic function approximation; intestinal absorption

资金

  1. National Science Foundation of China [20973121]
  2. National Basic Research Program of China (973 Program) [2011CB504001]
  3. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

向作者/读者索取更多资源

Oral bioavailability is an essential parameter in drug screening cascades and a good indicator of the capability of the delivery of a given compound to the systemic circulation by oral administration. In the present work, we report a database of oral bioavailability of 1014 molecules determined in humans. A systematic examination of the relationships between various physicochemical properties and oral bioavailability were carried out to investigate the influence of these properties on oral bioavailability. A number of property-based rules for bioavailability classification were generated and evaluated. We found that no rule was an effective predictor for oral bioavailability because these simple rules cannot characterize the influence of important metabolic processes on bioavailability. Finally, the genetic function approximation (GFA) technique was employed to construct the multiple linear regression models for oral bioavailability using structural fingerprints as the basic parameters, together with several important molecular properties. The best model is able to predict human oral bioavailability with an r of 0.79, a q of 0.72, and a RMSE (root-mean-square error) of 22.30% of the compounds from the training set. The analysis of the descriptors chosen by GFA shows that the important structural fingerprints are primarily related to important intestinal absorption and well-known metabolic processes. The predictive power of the models was further evaluated using a separate test set of 80 compounds, and the consensus model can predict the oral bioavailability with r(test) = 0.71 and RMSE = 23.55% for the tested compounds. Since the necessary molecular properties and structural fingerprints can be calculated easily and quickly, the models we proposed here may help speed up the process of finding or designing compounds with improved oral bioavailability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据