4.7 Article

Controlling HBV Replication in Vivo by Intravenous Administration of Triggered PEGylated siRNA-Nanoparticles

期刊

MOLECULAR PHARMACEUTICS
卷 6, 期 3, 页码 706-717

出版社

AMER CHEMICAL SOC
DOI: 10.1021/mp800157x

关键词

Cationic lipids; nanoparticles; RNA interference; hepatitis B virus; lamivudine

资金

  1. ImuThes Ltd.
  2. Mitsubishi Chemical Corporation
  3. South African Innovation Fund
  4. National Research Foundation
  5. South African Poliomyelitis Research Foundation

向作者/读者索取更多资源

Harnessing RNA interference (RNAi) to inhibit hepatitis B virus (HBV) gene expression has promising application to therapy. Here we describe a new hepatotropic nontoxic lipid-based vector system that is used to deliver chemically unmodified small interfering RNA (siRNA) sequences to the liver. Anti HBV formulations were generated by condensation of siRNA (A component) with cationic liposomes (B component) to form AB core particles. These core particles incorporate an aminoxy cholesteryl lipid for convenient surface postcoupling of polyethylene glycol (PEG; C component, stealth/biocompatibility polymer) to give triggered PEGylated siRNA-nanoparticles (also known as siRNA-ABC nanoparticles) with uniform small sizes of 80-100 nm in diameter. The oxime linkage that results from PEG coupling is pH sensitive and was included to facilitate acidic pH-triggered release of nucleic acids from endosomes. Nanoparticle-mediated siRNA delivery results in HBV replication knockdown in cell culture and in murine hydrodynamic injection models in vivo. Furthermore repeated systemic administration of triggered PEGylated siRNA-nanoparticles to HBV transgenic mice results in the suppression of markers of HBV replication by up to 3-fold relative to controls over a 28 day period. This compares favorably to silencing effects seen during lamivudine treatment. Collectively these observations indicate that our PEGylated siRNA-nanoparticles may have valuable applications in RNAi-based HBV therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据