4.7 Article

Nanospheres Formulated from L-Tyrosine Polyphosphate Exhibiting Sustained Release of Polyplexes and In Vitro Controlled Transfection Properties

期刊

MOLECULAR PHARMACEUTICS
卷 6, 期 3, 页码 986-995

出版社

AMER CHEMICAL SOC
DOI: 10.1021/mp9000316

关键词

Gene delivery; nonviral; nanospheres; nanoparticles; polyplexes

资金

  1. University of Akron
  2. Firestone Fellowship

向作者/读者索取更多资源

Currently, viruses are utilized as vectors for gene therapy, since they transport across cellular membranes, escape endosomes, and effectively deliver genes to the nucleus. The disadvantage of using viruses for gene therapy is their immune response. Therefore, nanospheres have been formulated as a nonviral gene vector by blending L-tyrosine-polyphosphate (LTP) with polyethylene glycol grafted to chitosan (PEG-g-CHN) and linear polyethylenimine (LPEI) conjugated to plasmid DNA (pDNA). PEG-g-CHN stabilizes the emulsion and prevents nanosphere coalescence. LPEI protects pDNA degradation during nanosphere formation, provides endosomal escape, and enhances gene expression. Previous studies show that LTP degrades within seven days and is appropriate for intracellular gene delivery. These nanospheres prepared by water-oil emulsion by sonication and solvent evaporation show diameters between 100 and 600 nm. Also, dynamic laser light scattering shows that nanospheres completely degrade after seven days. The sustained release of pDNA and pDNA-LPEI polyplexes is confirmed through electrophoresis and PicoGreen assay. A LIVE/DEAD cell viability assay shows that nanosphere viability is comparable to that of buffers. X-Gal staining shows a sustained transfection for 11 days using human fibroblasts. This result is sustained longer than pDNA-LPEI and pDNA-FuGENE 6 complexes. Therefore, LTP-pDNA nanospheres exhibit controlled transfection and can be used as a nonviral gene delivery vector.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据