4.7 Article

Thermodynamics, Molecular Mobility and Crystallization Kinetics of Amorphous Griseofulvin

期刊

MOLECULAR PHARMACEUTICS
卷 5, 期 6, 页码 927-936

出版社

AMER CHEMICAL SOC
DOI: 10.1021/mp800169g

关键词

Amorphous; crystallization; griseofulvin; John-Mehl-Avrami (JMA); molecular mobility; nucleation; stability

向作者/读者索取更多资源

Griseofulvin is a small rigid molecule that shows relatively high molecular mobility and small configurational entropy in the amorphous phase and tends to readily crystallize from both rubbery and glassy states. This work examines the crystallization kinetics and mechanism of amorphous griseofulvin and the quantitative correlation between the rate of crystallization and molecular mobility above and below T-g. Amorphous griseofulvin was prepared by rapidly quenching the melt in liquid N-2. The thermodynamics and dynamics of amorphous phase were then characterized using a combination of thermal analysis techniques. After characterization of the amorphous phase, crystallization kinetics above Tg were monitored by isothermal differential scanning calorimetry (DSC). Transformation curves for crystallization fit a second-order John-Mehl-Avrami (JMA) model. Crystallization kinetics below Tg were monitored by powder X-ray diffraction and fit to the second-order JMA model. Activation energies for crystallization were markedly different above and below Tg suggesting a change in mechanism. In both cases molecular mobility appeared to be partially involved in the rate-limiting step for crystallization, but the extent of correlation between the rate of crystallization and molecular mobility was different above and below Tg. A lower extent of correlation below Tg was observed which does not appear to be explained by the molecular mobility alone and the diminishing activation energy for crystallization suggests a change in the mechanism of crystallization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据