4.7 Article

Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats

期刊

MOLECULAR PHARMACEUTICS
卷 5, 期 2, 页码 316-327

出版社

AMER CHEMICAL SOC
DOI: 10.1021/mp7001285

关键词

imaging; MRI; drug delivery; oxidative stress; nanotoxicity

资金

  1. NIBIB NIH HHS [R01 EB005822] Funding Source: Medline

向作者/读者索取更多资源

It is essential to determine the biodistribution, clearance, and biocompatibility of magnetic nanoparticles (MNPs) for in vivo biomedical applications to ensure their safe clinical use. We have studied these aspects with our novel iron oxide MNP formulation, which can be used as a magnetic resonance imaging (MRI) agent and a drug carrier system. Changes in serum and tissue iron levels were analyzed over 3 weeks after intravenous administration of MNPs to rats. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AKP) levels, and total iron-binding capacity (TIBC) were also measured with time to assess the effect of MNPs on liver function. Selected tissues were also analyzed for oxidative stress and studied histologically to determine biocompatibility of MNPs. Serum iron levels gradually increased for up to 1 week but levels slowly declined thereafter. Biodistribution of iron in various body tissues changed with time but greater fraction of the injected iron localized in the liver and spleen than in the brain, heart, kidney, and lung. Magnetization measurements of the liver and spleen samples showed a steady decrease over 3 weeks, suggesting particle degradation. Serum showed a transient increase in ALT, AST, AKP levels, and TIBC over a period of 6-24 h following MNP injection. The increase in oxidative stress was tissue dependent, reaching a peak at similar to 3 days and then slowly declining thereafter. Histological analyses of liver, spleen, and kidney samples collected at 1 and 7 days showed no apparent abnormal changes. In conclusion, our MNPs did not cause long-term changes in the liver enzyme levels or induce oxidative stress and thus can be safely used for drug delivery and imaging applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据