4.7 Article

Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids

期刊

MOLECULAR PHARMACEUTICS
卷 5, 期 2, 页码 257-265

出版社

AMER CHEMICAL SOC
DOI: 10.1021/mp7001472

关键词

flavonoids; anthocyanins; malonyl-CoA; UDP-glucose; E. coli

向作者/读者索取更多资源

Plant flavonoid polyphenols continue to find increasing pharmaceutical and nutraceutical applications; however their isolation, especially of pure compounds, from plant material remains an underlying challenge. In the past Escherichia coli, one of the most well-characterized microorganisms, has been utilized as a recombinant host for protein expression and heterologous biosynthesis of small molecules. However, in many cases the expressed protein activities and biosynthetic efficiency are greatly limited by the host cellular properties, such as precursor and cofactor availability and protein or product tolerance. In the present work, we developed E. coli strains capable of high-level flavonoid synthesis through traditional metabolic engineering techniques. In addition to grafting the plant biosynthetic pathways, the methods included engineering of an alternative carbon assimilation pathway and the inhibition of competitive reaction pathways in order to increase intracellular flavonoid backbone precursors and cofactors. With this strategy, we report the production of plant-specific flavanones up to 700 mg/L and anthocyanins up to 113 mg/L from phenylpropanoic acid and flavan-3-of precursors, respectively. These results demonstrated the efficient and scalable production of plant flavonoids from E. coli for pharmaceutical and nutraceutical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据