4.7 Article

Synthesis and characterization of four-arm poly(ethylene glycol)-based gene delivery vehicles coupled to integrin and DNA-binding peptides

期刊

MOLECULAR PHARMACEUTICS
卷 5, 期 1, 页码 140-150

出版社

AMER CHEMICAL SOC
DOI: 10.1021/mp700072n

关键词

gene delivery; integrin; poly(ethylene glycol) vehicles

向作者/读者索取更多资源

The goal of this study was to develop a gene delivery vehicle that can specifically target cell surface receptors with low nonspecific protein adsorption and low cytotoxicity. Toward this goal, four-arm poly(ethylene glycol) vehicles were functionalized with DNA-binding peptides (DBPs) and integrin-binding (RGD) peptides. We have,previously described a novel PEG-based gene delivery vehicle functionalized with DBPs that Successfully transfected Chinese hamster ovary (CHO) cells with low toxicity and low protein adsorption. This work investigated whether incorporating RGD peptides onto PEG-DBP vehicles could target specific cell surface receptors and increase transfection efficiency of HEPG2 cells. DBP and RGD peptides were coupled onto PEG-tetraacrylate (PEG-TA) in three combinations (molar ratios of DBP:RGD of 1:3, 2:2, and 3:1) and characterized by measuring particle size, potential, and transfection efficiency as a function of charge ratio (peptide amine groups:DNA phosphate). Nonspecific protein adsorption and cytotoxicity of PEG-DBP-RGD vehicles were also measured. Dynamic light scattering showed that PEG-DBP-RGD vehicles condensed DNA into particles having mean diameters of 250-300 nm and zeta potentials ranging from -10 to 7 mV. It was found that coupling two RGD peptides to the PEG-DBP2 vehicle increased the transfection efficiency at a polymer/DNA charge ratio of 5:1 (+/-) and 6:1 (+/-) and that these vehicles had transfection efficiencies similar to those of polyethylenimine (PEI)/DNA particles. However, coupling one or three RGD peptides to PEG-DBP vehicles did not increase the transfection efficiency. Additionally, the PEG-DBP-RGD/ DNA particles adsorbed less protein than PEI particles and were less toxic to HEPG2 cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据