4.3 Article

Quantifying blood-spinal cord barrier permeability after peripheral nerve injury in the living mouse

期刊

MOLECULAR PAIN
卷 10, 期 -, 页码 -

出版社

SAGE PUBLICATIONS INC
DOI: 10.1186/1744-8069-10-60

关键词

Blood-spinal cord barrier permeability; Dynamic contrast-enhanced MRI; Gd-DTPA; Mouse; Neuropathic pain; Peripheral nerve injury; Spinal cord

资金

  1. Canadian Foundation for Innovation
  2. Ontario Innovation Trust
  3. Canadian Institutes of Health Research
  4. Genome Canada
  5. National Institutes of Healthy
  6. Ontario Research Fund
  7. Hospital for Sick Children
  8. CIHR

向作者/读者索取更多资源

Background: Genetic polymorphisms, gender and age all influence the risk of developing chronic neuropathic pain following peripheral nerve injury (PNI). It is known that there are significant inter-strain differences in pain hypersensitivity in strains of mice after PNI. In response to PNI, one of the earliest events is thought to be the disruption of the blood-spinal cord barrier (BSCB). The study of BSCB integrity after PNI may lead to a better understanding of the mechanisms that contribute to chronic pain. Results: Here we used in vivo dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to establish a timecourse for BSCB permeability following PNI, produced by performing a spared nerve injury (SNI). From this longitudinal study, we found that the SNI group had a significant increase in BSCB permeability over time throughout the entire spinal cord. The BSCB opening had a delayed onset and the increase in permeability was transient, returning to control levels just over one day after the surgery. We also examined inter-strain differences in BSCB permeability using five mouse strains (B10, C57BL/6J, CD-1, A/J and BALB/c) that spanned the range of pain hypersensitivity. We found a significant increase in BSCB permeability in the SNI group that was dependent on strain but that did not correlate with the reported strain differences in PNI-induced tactile hypersensitivity. These results were consistent with a previous experiment using Evans Blue dye to independently assess the status of the BSCB permeability. Conclusions: DCE-MRI provides a sensitive and non-invasive method to follow BSCB permeability in the same group of mice over time. Examining differences between mouse strains, we demonstrated that there is an important genetically-based control of the PNI-induced increase in BSCB permeability and that the critical genetic determinants of BSCB opening after PNI are distinct from those that determine genetic variability in PNI-induced pain hypersensitivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据