4.7 Review

Rebuilding cancer metastasis in the mouse

期刊

MOLECULAR ONCOLOGY
卷 7, 期 2, 页码 283-296

出版社

WILEY
DOI: 10.1016/j.molonc.2013.02.009

关键词

Cancer; Cell migration; Cell invasion; Knockout mice; Metastasis; Mouse models; Transgenic mice; Tumor progression

类别

资金

  1. EU-FP7 Framework Program TUMIC [2008-201662]
  2. Swiss National Science Foundation
  3. Swiss Cancer League

向作者/读者索取更多资源

Most cancer deaths are due to the systemic dissemination of cancer cells and the formation of secondary tumors (metastasis) in distant organs. Recent years have brought impressive progress in metastasis research, yet we still lack sufficient insights into how cancer cells migrate out of primary tumors and invade into neighboring tissue, intravasate into the blood or the lymphatic circulation, survive in the blood stream, and target specific organs to initiate metastatic outgrowth. While a large number of cellular and animal models of cancer have been crucial in delineating the molecular mechanisms underlying tumor initiation and progression, experimental models that faithfully recapitulate the multiple stages of metastatic disease are still scarce. The advent of sophisticated genetic engineering in mice, in particular the ability to manipulate gene expression in specific tissue and at desired time points at will, have allowed to rebuild the metastatic process in mice. Here, we describe a selection of cellular experimental systems, tumor transplantation mouse models and genetically engineered mouse models that are used for monitoring specific processes involved in metastasis, such as cell migration and invasion, and for investigating the full metastatic process. Such models not only aid in deciphering the pathomechanisms of metastasis, but are also instrumental for the preclinical testing of anti-metastatic therapies and further refinement and generation of improved models. (C) 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据