4.7 Article

The polyphenol quercetin protects the mev-1 mutant of Caenorhabditis elegans from glucose-induced reduction of survival under heat-stress depending on SIR-2.1, DAF-12, and proteasomal activity

期刊

MOLECULAR NUTRITION & FOOD RESEARCH
卷 58, 期 5, 页码 984-994

出版社

WILEY
DOI: 10.1002/mnfr.201300718

关键词

Caenorhabditis elegans; Nuclear hormone receptor; Proteostasis; SIR-2; 1; Unfolded protein response

向作者/读者索取更多资源

ScopeHyperglycemia is a hallmark of diabetes mellitus but slighter increases of blood glucose levels are observed also during ageing. Using the Caenorhabditis elegans mev-1 mutant, we identified molecular mechanisms underlying the protection from glucose toxicity by the polyphenol quercetin. Methods and resultsWe fed C. elegans mev-1 mutants on a liquid medium supplemented with 10 mM glucose, which resulted in a reduced survival at 37 degrees C. The polyphenol quercetin (1 M) was able to prevent glucose-induced lifespan reduction completely. RNA interference revealed that the sirtuin SIR-2.1, the nuclear hormone receptor DAF-12, and its putative co-activator MDT-15 were critical for the quercetin effects. Moreover, RNA interference for key factors of proteostasis reduced survival, which was not further affected by glucose or quercetin, suggesting that those proteins are a target for both substances. Besides unfolded protein response, proper functionality of the proteasome was shown to be crucial for the survival enhancing effects of quercetin and the polyphenol was finally demonstrated to activate proteasomal degradation. ConclusionOur studies demonstrate that lowest concentrations of quercetin prevent a glucose-induced reduction of survival. SIR-2.1, DAF-12, and MDT-15 were identified as targets that activate unfolded protein response and proteasomal degradation to limit the accumulation of functionally restricted proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据