4.6 Article

ZnT3 mRNA levels are reduced in Alzheimer's disease post-mortem brain

期刊

MOLECULAR NEURODEGENERATION
卷 4, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1750-1326-4-53

关键词

-

资金

  1. Alzheimer's Research Trust

向作者/读者索取更多资源

Background: ZnT3 is a membrane Zn2+ transporter that is responsible for concentrating Zn2+ into neuronal presynaptic vesicles. Zn2+ homeostasis in the brain is relevant to Alzheimer's disease (AD) because Zn2+ released during neurotransmission may bind to A beta peptides, accelerating the assembly of A beta into oligomers which have been shown to impair synaptic function. Results: We quantified ZnT3 mRNA levels in Braak-staged human post mortem (pm) brain tissue from medial temporal gyrus, superior occipital gyrus, superior parietal gyrus, superior frontal gyrus and cerebellum from individuals with AD (n = 28), and matched controls (n = 5) using quantitative real-time PCR. ZnT3 mRNA levels were significantly decreased in all four cortical regions examined in the AD patients, to 45-60% of control levels. This reduction was already apparent at Braak stage 4 in most cortical regions examined. Quantification of neuronal and glial-specific markers in the same samples (neuron-specific enolase, NSE; and glial fibrillary acidic protein, GFAP) indicated that loss of cortical ZnT3 expression was more pronounced, and occurred prior to, significant loss of NSE expression in the tissue. Significant increases in cortical GFAP expression were apparent as the disease progressed. No gene expression changes were observed in the cerebellum, which is relatively spared of AD neuropathology. Conclusions: This first study to quantify ZnT3 mRNA levels in human pm brain tissue from individuals with AD and controls has revealed a significant loss of ZnT3 expression in cortical regions, suggesting that neuronal cells in particular show reduced expression of ZnT3 mRNA in the disease. This suggests that altered neuronal Zn2+ handling may be an early event in AD pathogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据