4.6 Article

Targeting Axon Integrity to Prevent Chemotherapy-Induced Peripheral Neuropathy

期刊

MOLECULAR NEUROBIOLOGY
卷 56, 期 5, 页码 3244-3259

出版社

SPRINGER
DOI: 10.1007/s12035-018-1301-8

关键词

Chemotherapy-induced peripheral neuropathy; Heat shock protein 27; Paclitaxel; Axonal degeneration; Apoptosis

资金

  1. GRF grants from The Research Grant Council of the Hong Kong Special Administrative Region Government [CityU 11100015, CityU 11100417]
  2. Health and Medical Research Fund, Food and Health Bureau, Hong Kong Special Administrative Region Government [05160126]

向作者/读者索取更多资源

Chemotherapy-induced peripheral neuropathy (CIPN) is an irreversible off-target adverse effect of many chemotherapeutic agents such as paclitaxel, yet its mechanism is poorly understood and no preventative measure is available. CIPN is characterized by peripheral nerve damages resulting in permanent sensory function deficits. Our recent unbiased genome-wide analysis revealed that heat shock protein (Hsp) 27 is part of a transcriptional network induced by axonal injury and highly enriched for genes involved in adaptive neuronal responses, particularly axonal regeneration. To examine if Hsp27 could prevent the occurrence of CIPN, we first demonstrated that paclitaxel-induced allodynia was associated directly with axonal degeneration in sensory neurons in a mouse model of CIPN. We therefore hypothesize that by preventing axonal degeneration could prevent the development of CIPN. We drove expression of human Hsp27 (hHsp27) specifically in neurons. Development of mechanical and thermal allodynia was prevented completely in paclitaxel-treated hHsp27 transgenic mice. Strikingly, hHsp27 protected against paclitaxel-induced neurotoxicity in vivo including degeneration of afferent nerve fibers, demyelination, mitochondrial swelling, apoptosis, and restored sensory nerve action potential. Finally, we delineated signaling cascades that link CIPN development to caspase 3 and RhoA/cofilin activation in sensory neurons and peripheral nerves. hHsp27 exerted anti-apoptotic effect and maintained axon integrity by restoring caspase 3 and RhoA expression to basal levels. Taken together, our data suggest that by preventing axonal degeneration might prove beneficial as anti-CIPN drugs, which represents an emerging research area for therapeutic development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据