4.5 Article

Effects of FlrBC on flagellar biosynthesis of Shewanella oneidensis

期刊

MOLECULAR MICROBIOLOGY
卷 93, 期 6, 页码 1269-1283

出版社

WILEY
DOI: 10.1111/mmi.12731

关键词

-

资金

  1. Major State Basic Research Development Program (973 Program) [2010CB833803]
  2. National Natural Science Foundation of China [31270097]
  3. Doctoral Fund of the Ministry of Education of China [20130101110142]

向作者/读者索取更多资源

As a most conserved complex molecular machine made up of a large number of structural subunits, the flagellum is under tight regulation by hierarchical arrangements. Although variations in polar flagellar systems are found, most of them are restricted to multiple-copy components, such as flagellins and stators. Therefore, these features are regarded to be peripheral relative to the comprehensive conservation. In this study, however, we present evidence to show that the difference in highly conserved polar flagellar systems can be surprisingly profound, even at the heart of the classical regulatory hierarchy. In Gram-negative Shewanella oneidensis, two-component system FlrBC, whose counterpart is essential for flagellar biosynthesis and motility by directly controlling expression of class III genes in polarly flagellated bacteria such as Vibrio cholerae, is dispensable for the process. The system directly controls expression of the flaA gene, encoding a flagellin of weak motility. We further show that the ratio of two flagellins, FlaA and FlaB, determines motility of a flagellum. More strikingly, overproduction of FlrC results in a peritrichously multi-flagellated phenotype, and FlrC is likely to function as an activator in its unphosphorylated form for transcription of the flaA gene, contrasting the previously characterized counterpart.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据