4.5 Article

BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms

期刊

MOLECULAR MICROBIOLOGY
卷 85, 期 1, 页码 51-66

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1365-2958.2012.08094.x

关键词

-

资金

  1. Grants-in-Aid for Scientific Research [21112003, 23570056] Funding Source: KAKEN

向作者/读者索取更多资源

Biofilms are surface-associated bacterial aggregates, in which bacteria are enveloped by polymeric substances known as the biofilm matrix. Bacillus subtilis biofilms display persistent resistance to liquid wetting and gas penetration, which probably explains the broad-spectrum resistance of the bacteria in these biofilms to antimicrobial agents. In this study, BslA (formerly YuaB) was identified as a major contributor to the surface repellency of B. subtilis biofilms. Disruption of bslA resulted in the loss of surface repellency and altered the biofilm surface microstructure. BslA localized to the biofilm matrix in an exopolysaccharide-dependent manner. Purified BslA exhibited amphiphilic properties and formed polymers in response to increases in the area of the airwater interface in vitro. Genetic and biochemical analyses showed that the self-polymerization activity of BslA was essential for its ability to localize to the biofilm matrix. Confocal laser scanning microscopy showed that BslA formed a layer on the biofilm surface. Taken together, we propose that BslA, standing for biofilm-surface layer protein, is responsible for the hydrophobic layer on the surface of biofilms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据