4.5 Article

Two intercellular signals required for fruiting body formation in Myxococcus xanthus act sequentially but non-hierarchically

期刊

MOLECULAR MICROBIOLOGY
卷 86, 期 1, 页码 65-81

出版社

WILEY
DOI: 10.1111/j.1365-2958.2012.08173.x

关键词

-

资金

  1. Max Planck Society

向作者/读者索取更多资源

Starvation-induced fruiting body formation in Myxococcus xanthus depends on intercellular signalling. A-signal functions after 2 h of starvation and its synthesis depends on the asg genes. C-signal functions after 6 h of starvation and is generated by proteolytic cleavage of a precursor by the protease PopC. Previous gene expression studies suggested that the A- and C-signal lie on a hierarchical pathway. Here we explored the causal relationship between the A- and C-signal. The asgA and asgB mutants have reduced popC expression, PopC accumulation and C-signal accumulation. popC expression was shown not to depend on A-signal but on the AsgA and AsgB proteins. Restored popC expression in the two mutants rescued PopC and C-signal accumulation as well as C-signalling and the developmental defects of the two mutants without restoring A-signalling. Based on these results we suggest that A- and C-signal do not lie on a hierarchical, dependent pathway. Instead the A- and C-signal act sequentially and without a causal relationship suggesting that they are linked by a shared timing mechanism, which ensures the early and late onset of A-signalling and C-signalling, respectively, during starvation. This pathway topology represents a novel architecture for bacterial intercellular signalling systems involving more than one signal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据