4.5 Article

The morphogene AmiC2 is pivotal for multicellular development in the cyanobacterium Nostoc punctiforme

期刊

MOLECULAR MICROBIOLOGY
卷 79, 期 6, 页码 1655-1669

出版社

WILEY
DOI: 10.1111/j.1365-2958.2011.07554.x

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft, DFG [SFB766]
  2. China Scholarship Council

向作者/读者索取更多资源

P>Filamentous cyanobacteria of the order Nostocales are primordial multicellular organisms, a property widely considered unique to eukaryotes. Their filaments are composed of hundreds of mutually dependent vegetative cells and regularly spaced N-2-fixing heterocysts, exchanging metabolites and signalling molecules. Furthermore, they may differentiate specialized spore-like cells and motile filaments. However, the structural basis for cellular communication within the filament remained elusive. Here we present that mutation of a single gene, encoding cell wall amidase AmiC2, completely changes the morphology and abrogates cell differentiation and intercellular communication. Ultrastructural analysis revealed for the first time a contiguous peptidoglycan sacculus with individual cells connected by a single-layered septal cross-wall. The mutant forms irregular clusters of twisted cells connected by aberrant septa. Rapid intercellular molecule exchange takes place in wild-type filaments, but is completely abolished in the mutant, and this blockage obstructs any cell differentiation, indicating a fundamental importance of intercellular communication for cell differentiation in Nostoc. AmiC2-GFP localizes in the cell wall with a focus in the cross walls of dividing cells, implying that AmiC2 processes the newly synthesized septum into a functional cell-cell communication structure during cell division. AmiC2 thus can be considered as a novel morphogene required for cell-cell communication, cellular development and multicellularity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据