4.5 Article

Role of a Zn-independent DksA in Zn homeostasis and stringent response

期刊

MOLECULAR MICROBIOLOGY
卷 79, 期 3, 页码 700-715

出版社

WILEY
DOI: 10.1111/j.1365-2958.2010.07475.x

关键词

-

资金

  1. National Science Foundation [MCB-0949569]
  2. National Institutes of Health [R01 GM70641-01]
  3. Russian Academy of Sciences

向作者/读者索取更多资源

P>DksA is a global transcriptional regulator that directly interacts with RNA polymerase (RNAP) and, in conjunction with an alarmone ppGpp, alters transcription initiation at target promoters. DksA proteins studied to date contain a canonical Cys-4 Zn-finger motif thought to be essential for their proper folding and thus activity. In addition to the canonical DksA protein, the Pseudomonas aeruginosa genome encodes a closely related paralogue DksA2 that lacks the Zn-finger motif. Here, we report that DksA2 can functionally substitute for the canonical DksA in vivo in Escherichia coli and P. aeruginosa. We also demonstrate that DksA2 affects transcription by the E. coli RNAP in vitro similarly to DksA. The dksA2 gene is positioned downstream of a putative Zur binding site. Accordingly, we show that dksA2 expression is repressed by the presence of exogenous Zn, deletion of Zur results in constitutive expression of dksA2, and Zur binds specifically to the promoter region of dksA2. We also found that deletion of dksA2 confers a growth defect in the absence of Zn. Our data suggest that DksA2 plays a role in Zn homeostasis and serves as a back-up copy of the canonical Zn-dependent DksA in Zn-poor environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据