4.5 Article

Staphylococcus aureus SarA is a regulatory protein responsive to redox and pH that can support bacteriophage lambda integrase-mediated excision/recombination

期刊

MOLECULAR MICROBIOLOGY
卷 74, 期 6, 页码 1445-1458

出版社

WILEY
DOI: 10.1111/j.1365-2958.2009.06942.x

关键词

-

资金

  1. US Public Health Service [AI45041, AI43356, GM65685]
  2. American Heart Association

向作者/读者索取更多资源

P>Staphylococcus aureus produces a wide array of virulence factors and causes a correspondingly diverse array of infections. Production of these virulence factors is under the control of a complex network of global regulatory elements, one of which is sarA. sarA encodes a DNA binding protein that is considered to function as a transcription factor capable of acting as either a repressor or an activator. Using competitive ELISA assays, we demonstrate that SarA is present at approximately 50 000 copies per cell, which is not characteristic of classical transcription factors. We also demonstrate that SarA is present at all stages of growth in vitro and is capable of binding DNA with high affinity but that its binding affinity and pattern of shifted complexes in electrophoretic mobility shift assays is responsive to the redox state. We also show that SarA binds to the bacteriophage lambda (lambda) attachment site, attL, producing SarA-DNA complexes similar to intasomes, which consist of bacteriophage lambda integrase, Escherichia coli integration host factor and attL DNA. In addition, SarA stimulates intramolecular excision recombination in the absence of lambda excisionase, a DNA binding accessory protein. Taken together, these data suggest that SarA may function as an architectural accessory protein.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据