3.9 Review

Structural impact of cations on lipid bilayer models: Nanomechanical properties by AFM-force spectroscopy

期刊

MOLECULAR MEMBRANE BIOLOGY
卷 31, 期 1, 页码 17-28

出版社

TAYLOR & FRANCIS LTD
DOI: 10.3109/09687688.2013.868940

关键词

Atomic force microscopy; cations; force spectroscopy; lipid bilayer; mechanical stability

资金

  1. Agencia de Gestio d'Ajuts Universitaris i de Recerca (AGAUR) [2009SGR00277]

向作者/读者索取更多资源

Atomic Force Microscopy (AFM) has become an invaluable tool for studying the micro-and nanoworlds. As a stand-alone, high-resolution imaging technique and force transducer, it defies most other surface instrumentation in ease of use, sensitivity and versatility. The main strength of AFM relies on the possibility to operate in an aqueous environment on a wide variety of biological samples, from single molecules - DNA or proteins - to macromolecular assemblies like biological membranes. Understanding the effect of mechanical stress on membranes is of primary importance in biophysics, since cells are known to perform their function under a complex combination of forces. In the later years, AFM-based Force-Spectroscopy (AFM-FS) has provided a new vista on membrane mechanics in a confined area within the nanometer realm, where most of the specific molecular interactions take place. Lipid membranes are electrostatically charged entities that physiologically coexist with electrolyte solutions. Thus, specific interactions with ions are a matter of considerable interest. The distribution of ions in the solution and their interaction with the membranes are factors that substantially modify the structure and dynamics of the cell membranes. Furthermore, signaling processes are modified by the membrane capability of retaining ions. Supported Lipid Bilayers (SLBs) are a versatile tool to investigate phospholipid membranes mimicking biological surfaces. In the present contribution, we review selected experiments on the mechanical stability of SLBs as models of lipid membranes by means of AFM-FS, with special focus on the effect of cations and ionic strength in the overall nanomechanical stability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据