4.4 Article

Application of GQSAR for Scaffold Hopping and Lead Optimization in Multitarget Inhibitors

期刊

MOLECULAR INFORMATICS
卷 31, 期 6-7, 页码 473-490

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/minf.201100160

关键词

Group based QSAR; Scaffold hopping; Lead optimization; Multitarget inhibitors

向作者/读者索取更多资源

Many literature reports suggest that drugs against multiple targets may overcome many limitations of single targets and achieve a more effective and safer control of the disease. However, design of multitarget drugs presents a great challenge. The present study demonstrates application of a novel Group based QSAR (GQSAR) method to assist in lead optimization of multikinase (PDGFR-beta, FGFR-1 and SRC) and scaffold hopping of multiserotonin target (serotonin receptor 1A and serotonin transporter) inhibitors. For GQSAR analysis, a wide variety of structurally diverse multikinase inhibitors (225 molecules) and multiserotonin target inhibitors (162 molecules) were collected from various literature reports. Each molecule in the data set was divided into four fragments (kinase inhibitors) and three fragments (serotonin target inhibitors) and their corresponding two-dimensional fragment descriptors were calculated. The multiresponse regression GQSAR models were developed for both the datasets. The developed GQSAR models were found to be useful for scaffold hopping and lead optimization of multitarget inhibitors. In addition, the developed GQSAR models provide important fragment based features that can form the building blocks to guide combinatorial library design in the search for optimally potent multitarget inhibitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据