4.5 Article

Immune-related GTPase Irgm1 exacerbates experimental auto-immune encephalomyelitis by promoting the disruption of blood-brain barrier and blood-cerebrospinal fluid barrier

期刊

MOLECULAR IMMUNOLOGY
卷 53, 期 1-2, 页码 43-51

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.molimm.2012.06.009

关键词

Irgm1; EAE; Blood-brain barrier; Blood-cerebrospinal fluid barrier

资金

  1. National Natural Science Foundation of China [30870885]
  2. Jiangxi Provincial Natural Science Foundation [2007GQY2521]
  3. Jiangxi Provincial Department of Science Technology
  4. Department of Education, Heilongjiang Province [1153h08]

向作者/读者索取更多资源

Experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS), is a T cell-mediated autoimmune condition characterized by prominent inflammation in the CNS. In this model, autoreactive T cells are primed in peripheral lymph nodes and migrate into uninflamed CNS across blood-cerebrospinal fluid barrier (BCSFB) and blood-brain barrier (BBB) to initiate inflammation. However, the molecular mechanism controlling T cell migration remains to be determined. In an in vivo EAE mouse model, we have shown that Irgm1 (also known as LRG-47), a member of the immunity-related GTPase family, promotes the disruption of both BCSFB and BBB, and exacerbates the phenotypes of MOG-induced EAE. During EAE, Irgm1 was up-regulated in reactive astrocytes, ependymal cells and epithelial cells of the choroids plexus, which, in turn, promotes T cell infiltration into the CNS. Electron microscopy study showed that the MOG-induced disruption of both BBB and BCSFB was protected in the Irgm1(-/-) mice. Moreover, the expression of Claudin-5 (CLN-5), a major molecular determinant of BBB, in brain microvessel endothelial cells (BMVECs) was decreased in WT EAE mice while increased in Irgm1(-/-) mice. In addition, the expression of CC-chemokine ligand 20 (CCL-20), an important chemokine mediating lymphocyte trafficking across BCSFB, in the epithelial cells of choroids plexus was significantly suppressed in naive and EAE-induced Irgm1(-/-) mice. These data suggest that Irgm1 is an important molecular regulator for the properties of both BBB and BCSFB, and a proinflammatory factor for EAE. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据