4.5 Article

Reduced oxidative tissue damage during endotoxemia in IRAK-1 deficient mice

期刊

MOLECULAR IMMUNOLOGY
卷 50, 期 4, 页码 244-252

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.molimm.2012.01.011

关键词

IRAK-1; Lipopolysaccharide; Sepsis; Free radicals; Oxidative stress; Antioxidant enzymes

资金

  1. NIH

向作者/读者索取更多资源

The generation of reactive oxygen species (ROS) triggered by bacterial endotoxin lipopolysaccharide (LPS) plays a key role during the pathogenesis of sepsis. Given the key role that the interleukin-1 receptor associated kinase-1 (IRAK-1) plays in LPS-mediated Toll-like-receptor 4 (TLR4) pathway, we herein tested whether deletion of IRAK-1 gene in mice may render protection from LPS-induced oxidative tissue damage. In this report, we studied the levels of oxidative stress in vital organs including liver, kidney, and brain from wild type (WT) and IRAK-1 deficient mice injected with a lethal dose of LPS (25 mg/kg), a TLR4-specific agonist. We demonstrated that LPS challenge induced marked elevation of lipid peroxidation and nitrite levels in the plasma and tissues of WT mice, as well as elevated pro-inflammatory mediators. In contrast, IRAK-I deficient mice had significantly lower lipid peroxidation and nitrite levels, as well as lower levels of pro-inflammatory mediators. Mechanistically, LPS triggered higher levels of iNOS activity and elevated membrane translocation of p47(phox), a key component of NADPH oxidase in immune cell derived from WT mice compared to IRAK-1 deficient mice. Additionally, tissues harvested from WT mice injected with LPS exhibited reduced activities of anti-oxidant enzymes including glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD). In contrast, LPS challenge failed to reduce the activities of GPx and SOD in IRAK-1 deficient tissues. As a consequence, LPS caused significantly pronounced damage to liver and kidney tissues in WT mice as compared to IRAK-1 deficient mice. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据