4.5 Article

Genome-scale search of tumor-specific antigens by collective analysis of mutations, expressions and T-cell recognition

期刊

MOLECULAR IMMUNOLOGY
卷 46, 期 8-9, 页码 1824-1829

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.molimm.2009.01.019

关键词

Cancer vaccines; Human cancer genomes; Tumor-specific antigens

资金

  1. Academic Research Funds Singapore [R-148-000-081-112]
  2. National Natural Science Foundation of China [30772651]
  3. Ministry of Science and Technology China [2006AA020400]

向作者/读者索取更多资源

Background: Tumor-specific antigens (TSAs) are potential sources of cancer vaccines, some of which are derived from T-cell epitopes of over-expressed mutant proteins to elicit immunogenicity and overcome tolerance and evasion. The lack of effective vaccines for many cancers has prompted strong interest in improved TSA search methods. Recent progresses in profiling somatic mutations and expressions of human cancer genomes, and in predicting T-cell epitopes enable genome-scale TSA search by collectively analyzing these profiles. Such a collective approach has not been explored in spite of the availability and usage of individual methods. Methodology: Genome-scale TSA search was conducted by genome-scale search of tumor-specific mutations in differentially over-expressed genes of specific cancers based on tumor-specific somatic mutation and microarray gene expression data, followed by T-cell recognition analysis of the identified mutant and over-expressed peptides to determine if they are substrates of proteasomal cleavage, TAP mediated transport and MHC-I alleles capable of eliciting immune response. The performance of our method was tested against 12 and 4 known T-cell defined melanoma and lung cancer TSAs in the Cancer Immunity database. Conclusions: Our approach identified 50% and 75% of the 12 and 4 known TSAs and predicted from the human cancer genomes additional 8-250 and 14-359 putative TSAs of 5 and 3 HLA alleles respectively. The known TSA hit rates (1.9% and 0.8%) are enriched by 29-fold and 35-fold over those of mutation analysis. The numbers of predicted TSAs are within the testing range of typical screening campaigns. Noises in expression data of small sample sizes appear to be a major factor for misidentification of known TSAs. With improved data quality and analysis methods, the collective approach is potentially useful for facilitating genome-scale TSA search. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据