3.9 Article

Research Resource: Nuclear Receptor Atlas of Human Retinal Pigment Epithelial Cells: Potential Relevance to Age-Related Macular Degeneration

期刊

MOLECULAR ENDOCRINOLOGY
卷 25, 期 2, 页码 360-372

出版社

ENDOCRINE SOC
DOI: 10.1210/me.2010-0392

关键词

-

资金

  1. International Retinal Research Foundation
  2. American Health Assistance Foundation-Macular Degeneration Research
  3. National Institutes of Health [DK48807]
  4. Research to Prevent Blindness

向作者/读者索取更多资源

Retinal pigment epithelial (RPE) cells play a vital role in retinal physiology by forming the outer blood-retina barrier and supporting photoreceptor function. Retinopathies including age-related macular degeneration (AMD) involve physiological and pathological changes in the epithelium, severely impairing the retina and effecting vision. Nuclear receptors (NRs), including peroxisome proliferator-activated receptor and liver X receptor, have been identified as key regulators of physiological pathways such as lipid metabolic dysregulation and inflammation, pathways that may also be involved in development of AMD. However, the expression levels of NRs in RPE cells have yet to be systematically surveyed. Furthermore, cell culture lines are widely used to study the biology of RPE cells, without knowledge of the differences or similarities in NR expression and activity between these in vitro models and in vivo RPE. Using quantitative real-time PCR, we assessed the expression patterns of all 48 members of the NR family plus aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator in human RPE cells. We profiled freshly isolated cells from donor eyes (in vivo), a spontaneously arising human cell line (in vitro), and primary cell culture lines (in vitro) to determine the extent to which NR expression in the cultured cell lines reflects that of in vivo. To evaluate the validity of using cell culture models for investigating NR receptor biology, we determined transcriptional activity and target gene expression of several moderately and highly expressed NRs in vitro. Finally, we identified a subset of NRs that may play an important role in pathobiology of AMD. (Molecular Endocrinology 25:360-372, 2011)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据