3.9 Article

Dehdyroepiandrosterone Sulfate Directly Activates Protein Kinase C-β to Increase Human Neutrophil Superoxide Generation

期刊

MOLECULAR ENDOCRINOLOGY
卷 24, 期 4, 页码 813-821

出版社

OXFORD UNIV PRESS INC
DOI: 10.1210/me.2009-0390

关键词

-

资金

  1. Biotechnology and Biological Sciences Research Council
  2. PPP Foundation
  3. European Commission [LSHB-CT-2004-503467]
  4. Medical Research Council UK [G116/172, 0900567, G0801473]
  5. Medical Research Council
  6. MRC [G116/172, G0801473] Funding Source: UKRI
  7. Medical Research Council [G116/172, G0801473, G9818340B] Funding Source: researchfish

向作者/读者索取更多资源

Dehydroepiandrosterone sulfate (DHEAS) is the most abundant steroid in the human circulation and is secreted by the adrenals in an age-dependent fashion, with maximum levels during the third decade and very low levels in old age. DHEAS is considered an inactive metabolite, whereas cleavage of the sulfate group generates dehydroepiandrosterone (DHEA), a crucial sex steroid precursor. However, here we show that DHEAS, but not DHEA, increases superoxide generation in primed human neutrophils in a dose-dependent fashion, thereby impacting on a key bactericidal mechanism. This effect was not prevented by coincubation with androgen and estrogen receptor antagonists but was reversed by the protein kinase C inhibitor Bisindolylmaleimide 1. Moreover, we found that neutrophils are unique among leukocytes in expressing an organic anion-transporting polypeptide D, able to mediate active DHEAS influx transport whereas they did not express steroid sulfatase that activates DHEAS to DHEA. A specific receptor for DHEAS has not yet been identified, but we show that DHEAS directly activated recombinant protein kinase C-beta (PKC-beta) in a cell-free assay. Enhanced PKC-beta activation by DHEAS resulted in increased phosphorylation of p47(phox), a crucial component of the active reduced nicotinamide adenine dinucleotide phosphate complex responsible for neutrophil superoxide generation. Our results demonstrate that PKC-beta acts as an intracellular receptor for DHEAS in human neutrophils, a signaling mechanism entirely distinct from the role of DHEA as sex steroid precursor and with important implications for immunesenescence, which includes reduced neutrophil superoxide generation in response to pathogens. (Molecular Endocrinology 24: 813-821, 2010)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据