4.7 Article

DNA barcoding for the discrimination of Eurasian yews (Taxus L., Taxaceae) and the discovery of cryptic species

期刊

MOLECULAR ECOLOGY RESOURCES
卷 11, 期 1, 页码 89-100

出版社

WILEY
DOI: 10.1111/j.1755-0998.2010.02907.x

关键词

conservation; cryptic species; DNA barcode; taxonomy; Taxus

资金

  1. National Natural Science Foundation of China (NSFC) [30700042]
  2. CAS [9223111W1, KSCX2-YW-N-0807, 540806311211]
  3. Natural Science Foundation of Yunnan [2007C088M]
  4. talent project of Yunnan province [2008YP064]

向作者/读者索取更多资源

There is currently international interest in the application of DNA barcoding as a tool for plant species discrimination and identification. In this study, we evaluated the utility of five candidate plant DNA barcoding regions [rbcL, matK, trnH-psbA, trnL-F and internal transcribed spacer (ITS)] in Eurasian yews. This group of species is taxonomically difficult because of a lack of clear-cut morphologically differences between species and hence represents a good test case for DNA barcoding. Forty-seven accessions were analysed, representing all taxa treated in current floristic works and covering most of the distribution range of Taxus in Eurasia. As single loci, trnL-F and ITS showed the highest species discriminatory power, each resolving 11 of 11 lineages (= barcode taxa). Species discrimination using matK, trnH-psbA and rbcL individually was lower, with matK resolving 8 of 10, trnH-psbA 7 of 11 and rbcL 5 of 11 successfully sequenced lineages. The proposed CBOL core barcode (rbcL + matK) resolved 8 of 11 lineages. Combining loci generally increased the robustness (measured by clade support) of the barcoding discrimination. Based on overall performance, trnL-F and ITS, separately or combined, are proposed as barcode for Eurasian Taxus. DNA barcoding discriminated recognized taxa of Eurasian Taxus, namely T. baccata, T. cuspidata, T. fuana and T. sumatrana, and identified seven lineages among the T. wallichiana group, some with distinct geographical distributions and morphologies, and potentially representing new species. Using the proposed DNA barcode, a technical system can be established to rapidly and reliably identify Taxus species in Eurasia for conservation protection and for monitoring illegal trade.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据