4.7 Review

Molecular-clock methods for estimating evolutionary rates and timescales

期刊

MOLECULAR ECOLOGY
卷 23, 期 24, 页码 5947-5965

出版社

WILEY
DOI: 10.1111/mec.12953

关键词

Bayesian phylogenetics; calibration; lineage effects; local clock; rate variation; relaxed clock

资金

  1. Australian Research Council [DP110100383]
  2. Colombian government
  3. University of Sydney World Scholars Award

向作者/读者索取更多资源

The molecular clock presents a means of estimating evolutionary rates and timescales using genetic data. These estimates can lead to important insights into evolutionary processes and mechanisms, as well as providing a framework for further biological analyses. To deal with rate variation among genes and among lineages, a diverse range of molecular-clock methods have been developed. These methods have been implemented in various software packages and differ in their statistical properties, ability to handle different models of rate variation, capacity to incorporate various forms of calibrating information and tractability for analysing large data sets. Choosing a suitable molecular-clock model can be a challenging exercise, but a number of model-selection techniques are available. In this review, we describe the different forms of evolutionary rate heterogeneity and explain how they can be accommodated in molecular-clock analyses. We provide an outline of the various clock methods and models that are available, including the strict clock, local clocks, discrete clocks and relaxed clocks. Techniques for calibration and clock-model selection are also described, along with methods for handling multilocus data sets. We conclude our review with some comments about the future of molecular clocks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据