4.7 Article

Emergent patterns of population genetic structure for a coral reef community

期刊

MOLECULAR ECOLOGY
卷 23, 期 12, 页码 3064-3079

出版社

WILEY
DOI: 10.1111/mec.12804

关键词

chaotic genetic heterogeneity; community genetics; Hawaii; marine connectivity; pelagic larval duration; stepping stone dispersal

资金

  1. National Science Foundation (BioOCE) [1260169]
  2. National Oceanic and Atmospheric Administration (NMSP MOA) [2005-008/66882]
  3. Marine Alliance for Science and technology for Scotland (MASTS)
  4. Directorate For Geosciences
  5. Division Of Ocean Sciences [1260169] Funding Source: National Science Foundation

向作者/读者索取更多资源

What shapes variation in genetic structure within a community of codistributed species is a central but difficult question for the field of population genetics. With a focus on the isolated coral reef ecosystem of the Hawaiian Archipelago, we assessed how life history traits influence population genetic structure for 35 reef animals. Despite the archipelago's stepping stone configuration, isolation by distance was the least common type of genetic structure, detected in four species. Regional structuring (i.e. division of sites into genetically and spatially distinct regions) was most common, detected in 20 species and nearly in all endemics and habitat specialists. Seven species displayed chaotic (spatially unordered) structuring, and all were nonendemic generalist species. Chaotic structure also associated with relatively high global FST. Pelagic larval duration (PLD) was not a strong predictor of variation in population structure (R2=0.22), but accounting for higher FST values of chaotic and invertebrate species, compared to regionally structured and fish species, doubled the power of PLD to explain variation in global FST (adjusted R2=0.50). Multivariate correlation of eight species traits to six genetic traits highlighted dispersal ability, taxonomy (i.e. fish vs. invertebrate) and habitat specialization as strongest influences on genetics, but otherwise left much variation in genetic traits unexplained. Considering that the study design controlled for many sampling and geographical factors, the extreme interspecific variation in spatial genetic patterns observed for Hawaii marine species may be generated by demographic variability due to species-specific abundance and migration patterns and/or seascape and historical factors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据