4.7 Article

Chromosomal variation segregates within incipient species and correlates with reproductive isolation

期刊

MOLECULAR ECOLOGY
卷 23, 期 17, 页码 4362-4372

出版社

WILEY
DOI: 10.1111/mec.12864

关键词

chromosomal rearrangements; genetic incompatibilities; reproductive isolation; Saccharomyces paradoxus; speciation

资金

  1. NSERC discovery grant
  2. HFSP grant
  3. FRQS fellowship
  4. PROTEO fellowship

向作者/读者索取更多资源

Reproductive isolation is a critical step in the process of speciation. Among the most important factors driving reproductive isolation are genetic incompatibilities. Whether these incompatibilities are already present before extrinsic factors prevent gene flow between incipient species remains largely unresolved in natural systems. This question is particularly challenging because it requires that we catch speciating populations in the act before they reach the full-fledged species status. We measured the extent of intrinsic postzygotic isolation within and between phenotypically and genetically divergent lineages of the wild yeast Saccharomyces paradoxus that have partially overlapping geographical distributions. We find that hybrid viability between lineages progressively decreases with genetic divergence. A large proportion of postzygotic inviability within lineages is associated with chromosomal rearrangements, suggesting that chromosomal differences substantially contribute to the early steps of reproductive isolation within lineages before reaching fixation. Our observations show that polymorphic intrinsic factors may segregate within incipient species before they contribute to their full reproductive isolation and highlight the role of chromosomal rearrangements in speciation. We propose different hypotheses based on adaptation, biogeographical events and life history evolution that could explain these observations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据