4.7 Article

The detectability half-life in arthropod predator-prey research: what it is, why we need it, how to measure it, and how to use it

期刊

MOLECULAR ECOLOGY
卷 23, 期 15, 页码 3799-3813

出版社

WILEY
DOI: 10.1111/mec.12552

关键词

biological control; enzyme-linked immunosorbent assay; molecular gut-content analysis; polymerase chain reaction; predator-prey interactions

向作者/读者索取更多资源

Molecular gut-content analysis enables detection of arthropod predation with minimal disruption of ecosystem processes. Most assays produce only qualitative results, with each predator testing either positive or negative for target prey remains. Nevertheless, they have yielded important insights into community processes. For example, they have confirmed the long-hypothesized role of generalist predators in retarding early-season build-up of pest populations prior to the arrival of more specialized predators and parasitoids and documented the ubiquity of secondary and intraguild predation. However, raw qualitative gut-content data cannot be used to assess the relative impact of different predator taxa on prey population dynamics: they must first be weighted by the relative detectability periods for molecular prey remains for each predator-prey combination. If this is not carried out, interpretations of predator impact will be biased towards those with the longest detectabilities. We review the challenges in determining detectability half-lives, including unstated assumptions that have often been ignored in the performance of feeding trials. We also show how detectability half-lives can be used to properly weight assay data to rank predators by their importance in prey population suppression, and how sets of half-lives can be used to test hypotheses concerning predator ecology and physiology. We use data from 32 publications, comprising 97 half-lives, to generate and test hypotheses on taxonomic differences in detectability half-lives and discuss the possible role of the detectability half-life in interpreting qPCR and next-generation sequencing data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据