4.7 Article

Molecular diagnostics reveal spiders that exploit prey vibrational signals used in sexual communication

期刊

MOLECULAR ECOLOGY
卷 20, 期 10, 页码 2204-2216

出版社

WILEY
DOI: 10.1111/j.1365-294X.2011.05038.x

关键词

eavesdropping; generalist predators; gut content analysis; leafhoppers; predator-prey interactions; vibrational communication

资金

  1. Marie Curie Intra-European Fellowship [MEIF-CT-2006-39277]
  2. Slovenian National Research Agency [P1-0255]
  3. WOCS at Cardiff University
  4. laboratory of W.O.C.S. at Cardiff University

向作者/读者索取更多资源

Vibrational signalling is a widespread form of animal communication and, in the form of sexual communication, has been generally regarded as inherently short-range and a private communication channel, free from eavesdropping by generalist predators. A combination of fieldwork and laboratory experiments was used to test the hypothesis that predators can intercept and exploit such signals. First, we developed and characterized PCR primers specific for leafhoppers of the genus Aphrodes and specifically for the species Aphrodes makarovi. Spiders were collected from sites where leafhoppers were present and screened with these primers to establish which spider species were significant predators of this species during the mating period of these leafhoppers. Analysis using PCR of the gut contents of tangle-web spiders, Enoplognatha ovata (Theridiidae), showed that they consume leafhoppers in the field at a greater rate when signalling adults were present than when nymphs were dominant, suggesting that the spiders were using these vibrations signals to find their prey. Playback and microcosm experiments then showed that E. ovata can use the vibrational signals of male leafhoppers as a cue during foraging and, as a result, killed significantly more male than female A. makarovi. Our results show, for the first time, that arthropod predators can exploit prey vibrational communication to obtain information about prey availability and use this information to locate and capture prey. This may be a widespread mechanism for prey location, one that is likely to be a major unrecognized driver of evolution in both predators and prey.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据