4.7 Article

Effects of straw incorporation along with microbial inoculant on methane and nitrous oxide emissions from rice fields

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 518, 期 -, 页码 209-216

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2015.02.028

关键词

Straw incorporation; Microbial inoculant; Methane; Nitrous oxide; Rice fields

资金

  1. Strategic Priority Research Program of the Chinese Academy of Sciences [XDB15020103]
  2. Special Fund for Agro-scientific Research in the Public Interest [201103039]
  3. National Natural Sciences Foundation of China [41271259, 41201243]

向作者/读者索取更多资源

Incorporation of straw together with microbial inoculant (a microorganism agent, accelerating straw decomposition) is being increasingly adopted in rice cultivation, thus its effect on greenhouse gas (GHG) emissions merits serious attention. A 3-year field experiment was conducted from 2010 to 2012 to investigate combined effect of straw and microbial inoculant on methane (CH4) and nitrous oxide (N2O) emissions, global warming potential (GWP) and greenhouse gas intensity (GHGI) in a rice field in Jurong, Jiangsu Province, China. The experiment was designed to have treatment NPK (N, P and K fertilizers only), treatment NPKS (NPK plus wheat straw), treatment NPKSR (NPKS plus Ruilaite microbial inoculant) and treatment NPKSJ (NPKS plus Jinkuizi microbial inoculant). Results show that compared to NPK, NPKS increased seasonal CH4 emission by 280-1370%, while decreasing N2O emission by 7-13%. When compared with NPKS, NPKSR and NPKSJ increased seasonal CH4 emission by 7-13% and 6-12%, respectively, whereas reduced N2O emission by 10-27% and 9-24%, respectively. The higher CH4 emission could be attributed to the higher soil CH4 production potential triggered by the combined application of straw and microbial inoculant, and the lower N2O emission to the decreased inorganic N content. As a whole, the benefit of lower N2O emission was completely offset by increased CH4 emission, resulting in a higher GWP for NPKSR (5-12%) and NPKSJ (5-11%) relative to NPKS. Due to NPKSR and NPKSJ increased rice grain yield by 3-6% and 2-4% compared to NPKS, the GHGI values for NPKS, NPKSR and NPKSJ were comparable. These findings suggest that incorporating straw together with microbial inoculant would not influence the radiative forcing of rice production in the terms of per unit of rice grain yield relative to the incorporation of straw alone. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据