4.7 Article

Population structure and migration pattern of a conifer pathogen, Grosmannia clavigera, as influenced by its symbiont, the mountain pine beetle

期刊

MOLECULAR ECOLOGY
卷 21, 期 1, 页码 71-86

出版社

WILEY
DOI: 10.1111/j.1365-294X.2011.05366.x

关键词

approximate Bayesian computation; demography; fungi; insect dispersal; landscape; migration; population genetics; symbiosis; vector

资金

  1. Genome Canada
  2. Genome BC
  3. Genome Alberta
  4. Government of Alberta [AAET/AFRI-859-G07]

向作者/读者索取更多资源

We investigated the population structure of Grosmannia clavigera (Gc), a fungal symbiont of the mountain pine beetle (MPB) that plays a crucial role in the establishment and reproductive success of this pathogen. This insectfungal complex has destroyed over 16 million ha of lodgepole pine forests in Canada, the largest MPB epidemic in recorded history. During this current epidemic, MPB has expanded its range beyond historically recorded boundaries, both northward and eastward, and has now reached the jack pine of Alberta, potentially threatening the Canadian boreal forest. To better understand the dynamics between the beetle and its fungal symbiont, we sampled 19 populations in western North America and genotyped individuals from these populations with eight microsatellite markers. The fungus displayed high haplotype diversity, with over 250 unique haplotypes observed in 335 single spore isolates. Linkage equilibria in 13 of the 19 populations suggested that the fungus reproduces sexually. Bayesian clustering and distance analyses identified four genetic clusters that corresponded to four major geographical regions, which suggested that the epidemic arose from multiple geographical sources. A genetic cluster north of the Rocky Mountains, where the MPB has recently become established, experienced a population bottleneck, probably as a result of the recent range expansion. The two genetic clusters located north and west of the Rocky Mountains contained many fungal isolates admixed from all populations, possibly due to the massive movement of MPB during the epidemic. The general agreement in northsouth differentiation of MPB and G. clavigera populations points to the fungal pathogens dependence on the movement of its insect vector. In addition, the patterns of diversity and the individual assignment tests of the fungal associate suggest that migration across the Rocky Mountains occurred via a northeastern corridor, in accordance with meteorological patterns and observation of MPB movement data. Our results highlight the potential of this pathogen for both expansion and sexual reproduction, and also identify some possible barriers to gene flow. Understanding the ecological and evolutionary dynamics of this fungusbeetle association is important for the modelling and prediction of MPB epidemics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据