4.7 Article

A strong genetic footprint of the re-introduction history of Alpine ibex (Capra ibex ibex)

期刊

MOLECULAR ECOLOGY
卷 18, 期 24, 页码 5046-5058

出版社

WILEY
DOI: 10.1111/j.1365-294X.2009.04420.x

关键词

Alpine ibex; founder events; genetic drift; genetic variation; re-introduction; serial bottlenecks

资金

  1. Swiss Federal Office for the Environment (FOEN)
  2. Forschungskredit of the University of Zurich

向作者/读者索取更多资源

A population's neutral genetic variation is a composite of its size, degree of isolation and demographic history. Bottlenecks and founder events increase genetic drift, leading to the loss of genetic variation and increased genetic differentiation among populations. Gene flow has the opposite effects. Thus, gene flow can override the genetic patterns caused by founder events. Using 37 microsatellite loci, we investigated the effects of serial bottlenecks on genetic variation and differentiation among 42 Alpine ibex populations in Switzerland with known re-introduction histories. We detected a strong footprint of re-introduction events on contemporary genetic structure, with re-introduction history explaining a substantial part of the genetic differentiation among populations. As a result of the translocation of a considerable number of individuals from the sole formerly surviving population in northern Italy, most of the genetic variation of the ancestral population is now present in the combined re-introduced Swiss populations. However, re-introductions split up the genetic variation among populations, such that each contemporary Swiss population showed lower genetic variation than the ancestral population. As expected, serial bottlenecks had different effects on the expected heterozygosity (He) and standardized number of alleles (sNa). While loss of sNa was higher in the first bottlenecks than in subsequent ones, He declined to a similar degree with each bottleneck. Thus, genetic drift was detected with each bottleneck, even when no loss of sNa was observed. Overall, more than a hundred years after the beginning of this successful re-introduction programme, re-introduction history was the main determinant of today's genetic structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据