4.7 Article

Genetics of sprouting: effects of long-term persistence in fire-prone ecosystems

期刊

MOLECULAR ECOLOGY
卷 17, 期 17, 页码 3827-3835

出版社

WILEY
DOI: 10.1111/j.1365-294X.2008.03889.x

关键词

disturbance; fire; genetic structure; spatial autocorrelation

资金

  1. Linneus-Palme Foundation

向作者/读者索取更多资源

Fire functional traits (postfire resprouting and seeding) are considered to be adaptations for persisting in fire-prone environments. Although ecological and evolutionary consequences of sprouting have been extensively discussed, within-species genetic variability and structure are unknown. Here we report levels and distribution patterns of genetic polymorphisms in postfire stands of the predominant sprouter Nothofagus antarctica. Fresh foliage of 50 individuals was collected following a spatially explicit sampling design for isozyme analysis from two replicates of each of four habitat types inhabited by the species in northwestern Patagonia, Argentina: matorral, high elevation, forest, and temporally flooded basins. Average polymorphism per population ranged from 440% to 78% and mean gene diversity per site H-S varied from 0.187 to 0.274. These results show that sprouter populations hold considerable genetic variation. Significant genetic structure over short distances (< 50 m) was found at all locations. Ancient fine-scale genetic structure is preserved by occasional seedling establishment that results in high co-ancestry coefficients. Sprouter populations growing in suboptimal habitats such as matorral, high elevation or basins consist of pairs of heterozygous genets that occur at larger spatial scales as a result of micro-environmental heterogeneity and/or local competition between near neighbour genotypes. In contrast, homozygous pairs of individuals for distinct isozyme loci occurred at larger spatial scales in forest stands. This indicates that biparental inbreeding due to local propagule establishment may take place to some extent in sprouters growing under favourable conditions. Our results show that sprouters follow a long-lasting genet persistence strategy which most probably is selected under unpredictable disturbance regimes, such as fire.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据