4.8 Article

Bad Targets the Permeability Transition Pore Independent of Bax or Bak to Switch between Ca2+-Dependent Cell Survival and Death

期刊

MOLECULAR CELL
卷 33, 期 3, 页码 377-388

出版社

CELL PRESS
DOI: 10.1016/j.molcel.2009.01.018

关键词

-

资金

  1. NIH [KO1CA10659, GM59419]
  2. Burroughs Welcome Fund Career Award in Biomedical Sciences

向作者/读者索取更多资源

Calcium oscillations exert physiological control on mitochondrial energy metabolism and can also lead to mitochondrial membrane permeabilization and cell death. The outcome of the mitochondrial calcium signaling is altered by stress factors such as ceramide or staurosporine. However, the mechanism of this proapoptotic switch remains unclear. Using genetic, biochemical, pharmacological, and functional approaches, we here show that ceramide and staurosporine target PP2A and protein kinases A and C, respectively, in a mitochondria-associated signaling complex to induce dephosphorylation of the BH3-only protein Bad. Dephosphorylated Bad sensitizes the mitochondrial permeability transition pore (PTP) to Ca2+ through a Bcl-xL-sensitive and VDAC-mediated process. Furthermore, the Bad-induced sensitization of the PTP to Ca2+ does not require Bax or Bak. Thus, phospho-regulatory mechanisms converge on Bad to switch between the survival and apoptotic functions of mitochondrial calcium signaling by activating a mechanism whereby a BH3-only protein bypasses Bax/Bak and engages the PTP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据