4.6 Article

Every Microsatellite is Different: Intrinsic DNA Features Dictate Mutagenesis of Common Microsatellites Present in the Human Genome

期刊

MOLECULAR CARCINOGENESIS
卷 48, 期 4, 页码 379-388

出版社

WILEY
DOI: 10.1002/mc.20499

关键词

DNA polymerase fidelity; slipped strand mispairing; interruptions; indel mutations; microsatellite instability

资金

  1. NIH [RO1 CA100060]

向作者/读者索取更多资源

Microsatellite sequences are ubiquitous in the human genome and are important regulators of genome function. Here, we examine the mutational mechanisms governing the stability of highly abundant mono-, di-, and tetranucleotide microsatellites. Microsatellite mutation rate estimates from pedigree analyses and experimental models range from a low of similar to 10(-6) to a high of similar to 10(-2) mutations per locus per generation. The vast majority of observed mutational variation can be attributed to features intrinsic to the allele itself, including motif size, length, and sequence composition. A greater than linear relationship between motif length and mutagenesis has been observed in several model systems. Motif sequence differences contribute up to 10-fold to the variation observed in human cell mutation rates. The major mechanism of microsatellite mutagenesis is strand slippage during DNA synthesis. DNA polymerases produce errors within microsatellites at a frequency that is 10- to 100-fold higher than the frequency of frameshifts in coding sequences. Motif sequence significantly affects both polymerase error rate and specificity, resulting in strand biases within complementary microsatellites. Importantly, polymerase errors within microsatellites include base substitutions, deletions, and complex mutations, all of which produced interrupted alleles from pure microsatellites. Postreplication mismatch repair efficiency is affected by microsatellite motif size and sequence, also contributing to the observed variation in microsatellite mutagenesis. Inhibition of DNA synthesis within common microsatellites is highly sequence-dependent, and is positively correlated with the production of errors. DNA secondary structure within common microsatellites can account for some DNA polymerase pause sites, and may be an important factor influencing mutational specificity. (C) 2009 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据