4.6 Article

Quinacrine Overcomes Resistance to Erlotinib by Inhibiting FACT, NF-κB, and Cell-Cycle Progression in Non-Small Cell Lung Cancer

期刊

MOLECULAR CANCER THERAPEUTICS
卷 13, 期 9, 页码 2203-2214

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1535-7163.MCT-14-0013

关键词

-

类别

资金

  1. National Cancer Institute [P01 CA062220]
  2. Clinical & Translational Science Collaborative of Cleveland Core Utilization pilot grant at Case Western Reserve University [P30 CA043703-23]
  3. Harrington Discovery Institute

向作者/读者索取更多资源

Erlotinib is a tyrosine kinase inhibitor approved for the treatment of patients with advanced non-small cell lung cancer (NSCLC). In these patients, erlotinib prolongs survival but its benefit remains modest because many tumors express wild-type (wt) EGFR or develop a second-site EGFR mutation. To test drug combinations that could improve the efficacy of erlotinib, we combined erlotinib with quinacrine, which inhibits the FACT (facilitates chromatin transcription) complex that is required for NF-kappa B transcriptional activity. In A549 (wtEGFR), H1975 (EGFR-L858R/T790M), and H1993 (MET amplification) NSCLC cells, this drug combination was highly synergistic, as quantified by Chou-Talalay combination indices, and slowed xenograft tumor growth. At a sub-IC50 but more clinically attainable concentration of erlotinib, quinacrine, alone or in combination with erlotinib, significantly inhibited colony formation and induced cell-cycle arrest and apoptosis. Quinacrine decreased the level of active FACT subunit SSRP1 and suppressed NF-kappa B-dependent luciferase activity. Knockdown of SSRP1 decreased cell growth and sensitized cells to erlotinib. Moreover, transcriptomic profiling showed that quinacrine or combination treatment significantly affected cell-cycle-related genes that contain binding sites for transcription factors that regulate SSRP1 target genes. As potential biomarkers of drug combination efficacy, we identified genes that were more strongly suppressed by the combination than by single treatment, and whose increased expression predicted poorer survival in patients with lung adenocarcinoma. This preclinical study shows that quinacrine overcomes erlotinib resistance by inhibiting FACT and cell-cycle progression, and supports a clinical trial testing erlotinib alone versus this combination in advanced NSCLC. (C) 2014 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据