4.6 Article

Bisphosphorylated PEA-15 Sensitizes Ovarian Cancer Cells to Paclitaxel by Impairing the Microtubule-Destabilizing Effect of SCLIP

期刊

MOLECULAR CANCER THERAPEUTICS
卷 12, 期 6, 页码 1099-1111

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1535-7163.MCT-12-0737

关键词

-

类别

资金

  1. NIH/NCI [R01CA127562 03, CA016672]
  2. University of Texas MD Anderson Cancer Center

向作者/读者索取更多资源

Paclitaxel is a standard chemotherapeutic agent for ovarian cancer. PEA-15 (phosphoprotein enriched in astrocytes-15 kDa) regulates cell proliferation, autophagy, apoptosis, and glucose metabolism and also mediates AKT-dependent chemoresistance in breast cancer. The functions of PEA-15 are tightly regulated by its phosphorylation status at Ser104 and Ser116. However, the effect of PEA-15 phosphorylation status on chemosensitivity of cancer cells remains unknown. Here, wetested the hypothesis that PEA-15 phosphorylated at both Ser104 and Ser116 (pPEA-15) sensitizes ovarian cancer cells to paclitaxel. We first found that knockdown of PEA-15 in PEA-15-high expressing HEY and OVTOKO ovarian cancer cells resulted in paclitaxel resistance, whereas re-expression of PEA-15 in these cells led to paclitaxel sensitization. We next found that SKOV3. ip1-DD cells (expressing phosphomimetic PEA-15) were more sensitive to paclitaxel than SKOV3. ip1-AA cells (expressing nonphosphorylatable PEA-15). Compared with SKOV3. ip1-vector and SKOV3. ip1-AA cells, SKOV3. ip1-DD cells displayed reduced cell viability, inhibited anchorage-independent growth, and augmented apoptosis when treated with paclitaxel. Furthermore, HEY and OVTOKO cells displayed enhanced paclitaxel sensitivity when transiently overexpressing phosphomimetic PEA-15 and reduced paclitaxel sensitivity when transiently overexpressing nonphosphorylatable PEA-15. These results indicate that pPEA-15 sensitizes ovarian cancer cells to paclitaxel. cDNA microarray analysis suggested that SCLIP (SCG10-like protein), a microtubule-destabilizing protein, is involved in pPEA-15-mediated chemosensitization. We found that reduced expression and possibly posttranslational modification of SCLIP following paclitaxel treatment impaired the microtubule-destabilizing effect of SCLIP, thereby promoting induction of mitotic arrest and apoptosis by paclitaxel. Our findings highlight the importance of pPEA-15 as a promising target for improving the efficacy of paclitaxel-based therapy in ovarian cancer. (C) 2013 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据