4.6 Article

Targeting Sphingosine Kinase Induces Apoptosis and Tumor Regression for KSHV-Associated Primary Effusion Lymphoma

期刊

MOLECULAR CANCER THERAPEUTICS
卷 13, 期 1, 页码 154-164

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1535-7163.MCT-13-0466

关键词

-

类别

资金

  1. NIH [CA88932, DE16572, AI087167]
  2. Center for Biomedical Research Excellence subaward [RR021970]
  3. SOM Research Enhancement Funding [5497400038]
  4. National Natural Science Foundation [81272191]
  5. NNSF for Young Scientists of China [81101791]

向作者/读者索取更多资源

Sphingosine kinase (SPHK) is overexpressed by a variety of cancers, and its phosphorylation of sphingosine results in accumulation of sphingosine-1-phosphate (S1P) and activation of antiapoptotic signal transduction. Existing data indicate a role for S1P in viral pathogenesis, but roles for SPHK and S1P in virus-associated cancer progression have not been defined. Rare pathologic variants of diffuse large B-cell lymphoma arise preferentially in the setting of HIV infection, including primary effusion lymphoma (PEL), a highly mortal tumor etiologically linked to the Kaposi's sarcoma-associated herpesvirus (KSHV). We have found that ABC294640, a novel clinical-grade small molecule selectively targeting SPHK (SPHK2 >> SPHK1), induces dose-dependent caspase cleavage and apoptosis for KSHV+ patient-derived PEL cells, in part through inhibition of constitutive signal transduction associated with PEL cell proliferation and survival. These results were validated with induction of PEL cell apoptosis using SPHK2-specific siRNA, as well as confirmation of drug-induced SPHK inhibition in PEL cells with dose-dependent accumulation of proapoptotic ceramides and reduction of intracellular S1P. Furthermore, we demonstrate that systemic administration of ABC294640 induces tumor regression in an established human PEL xenograft model. Complimentary ex vivo analyses revealed suppression of signal transduction and increased KSHV lytic gene expression within drug-treated tumors, with the latter validated in vitro through demonstration of dose-dependent viral lytic gene expression within PEL cells exposed to ABC294640. Collectively, these results implicate interrelated mechanisms and SPHK2 inhibition in the induction of PEL cell death by ABC294640 and rationalize evaluation of ABC294640 in clinical trials for the treatment of KSHV-associated lymphoma. (C) 2013 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据