4.6 Article

Modulation of Protein Phosphatase 2A Activity Alters Androgen-Independent Growth of Prostate Cancer Cells: Therapeutic Implications

期刊

MOLECULAR CANCER THERAPEUTICS
卷 10, 期 5, 页码 720-731

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1535-7163.MCT-10-1096

关键词

-

类别

资金

  1. Department of Defense/U.S. Army [W81XWH-09-1-0137]
  2. NIH/National Cancer Institute [CA137513]
  3. USAMCI

向作者/读者索取更多资源

Earlier we identified PPP2CA, which encodes for the a-isoform of protein phosphatase 2A (PP2A) catalytic subunit, as one of the downregulated genes in androgen-independent prostate cancer. PP2A is a serine/threonine phosphatase and a potent tumor suppressor involved in broad cellular functions; however, its role in prostate cancer has not yet been determined. Here, we have investigated the effect of PP2A activity modulation on the androgen-independent growth of prostate cancer cells. Our data show that the PPP2CA expression and PP2A activity is downregulated in androgen-independent (C4-2) prostate cancer cells as compared with androgen-dependent (LNCaP) cells. Downregulation of PP2A activity by pharmacologic inhibition or short interfering RNA-mediated PPP2CA silencing sustains the growth of LNCaP cells under an androgen-deprived condition by relieving the androgen deprivation-induced cell-cycle arrest and preventing apoptosis. Immunoblot analyses reveal enhanced phosphorylation of Akt, extracellular signal-regulated kinase (ERK), BAD, increased expression of cyclins (A1/D1), and decreased expression of cyclin inhibitor (p27) on PP2A downregulation. Furthermore, our data show that androgen receptor (AR) signaling is partially maintained in PP2A-inhibited cells through increased AR expression and ligand-independent phosphorylation. Pharmacologic inhibition of Akt, ERK, and AR suggest a role of these signaling pathways in facilitating the androgen-independent growth of LNCaP cells. These observations are supported by the effect of ceramide, a PP2A activator, on androgen-independent C4-2 cells. Ceramide inhibited the growth of C4-2 cells on androgen deprivation, an effect that could be abrogated by PP2A downregulation. Altogether, our findings suggest that modulation of PP2A activity may represent an alternative therapeutic approach for the treatment of advanced androgen-independent prostate cancer. Mol Cancer Ther; 10(5); 720-31. (C) 2011 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据